Investigation of selective catalytic reduction impact on mercury speciation under simulated NOx emission control conditions.

نویسندگان

  • Chun W Lee
  • Ravi K Srivastava
  • S Behrooz Ghorishi
  • Thomas W Hastings
  • Frank M Stevens
چکیده

Selective catalytic reduction (SCR) technology increasingly is being applied for controlling emissions of nitrogen oxides (NOx) from coal-fired boilers. Some recent field and pilot studies suggest that the operation of SCR could affect the chemical form of mercury (Hg) in coal combustion flue gases. The speciation of Hg is an important factor influencing the control and environmental fate of Hg emissions from coal combustion. The vanadium and titanium oxides, used commonly in the vanadia-titania SCR catalyst for catalytic NOx reduction, promote the formation of oxidized mercury (Hg2+). The work reported in this paper focuses on the impact of SCR on elemental mercury (Hg0) oxidation. Bench-scale experiments were conducted to investigate Hg0 oxidation in the presence of simulated coal combustion flue gases and under SCR reaction conditions. Flue gas mixtures with different concentrations of hydrogen chloride (HCl) and sulfur dioxide (SO2) for simulating the combustion of bituminous coals and subbituminous coals were tested in these experiments. The effects of HCl and SO2 in the flue gases on Hg0 oxidation under SCR reaction conditions were studied. It was observed that HCl is the most critical flue gas component that causes conversion of Hg0 to Hg2+ under SCR reaction conditions. The importance of HCl for Hg0 oxidation found in the present study provides the scientific basis for the apparent coal-type dependence observed for Hg0 oxidation occurring across the SCR reactors in the field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Mercury Speciation at Power Plants Using Scr and Sncr Nox Control Technologies

Since the U.S. Environmental Protection Agency (EPA) regulatory determination in 2000 that it intended to regulate emissions from coalfired power plants, many utilities have stepped up proactive steps to investigate methods to control and reduce emissions. However, a lack of sound data still exists which documents the effect of selective catalytic reduction (SCR), selective noncatalytic reducti...

متن کامل

Evaluation of the Effect of SCR NOx Control Technology on Mercury Speciation

The U.S. Environmental Protection Agency (EPA) performed an Information Collection Request (ICR) in 1999 to gather additional information on the control and emission of mercury from coal-fired power plants. The ICR data indicates that a significant, but highly variable, amount of mercury removal can occur across a power plant’s conventional air pollution control (APC) equipment used for the cap...

متن کامل

Preliminary Estimates of Performance and Cost of Mercury Emission Control Technology Applications on Electric Utility Boilers: An Update

The Environmental Protection Agency has recently proposed a reduction in mercury emissions from coal-fired power plants. There are two broad approaches under development to controlling mercury emissions from coal-fired electric utility boilers: (1) powdered activated carbon (PAC) injection, and (2) multipollutant control, in which Hg capture is enhanced in existing and new sulfur dioxide (SO2),...

متن کامل

Greenidge Multi-pollutant Control Project

The Greenidge Multi-Pollutant Control Project is being conducted at the 107-MW AES Greenidge Unit 4 as part of the U.S. Department of Energy’s (DOE) Power Plant Improvement Initiative (PPII) to demonstrate an innovative combination of technologies that is well-suited for reducing emissions from the nation’s large fleet (~60 GW) of smaller coal-fired units. The technologies, which include a NOxO...

متن کامل

Optimization and Modeling of CuOx/OMWNT’s for Catalytic Reduction of Nitrogen Oxides by Response Surface Methodology

A series of copper oxide (CuOx) catalysts supported by oxidized multi-walled carbon nanotubes (OMWNT’s) were prepared by the wet impregnation method for the low temperature (200 °C) selective catalytic reduction of nitrogen oxides (NOx) using NH3 as a reductant agent in the presence of excess oxygen. These catalysts were characterized by FTIR, XRD, SEM-EDS, and H2-TPR meth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Air & Waste Management Association

دوره 54 12  شماره 

صفحات  -

تاریخ انتشار 2004